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Multi-Sample based Contrastive Loss for Top-k
Recommendation

Hao Tang, Guoshuai Zhao, Yuxia Wu, and Xueming Qian

Abstract—The top-k recommendation is a fundamental task
in recommendation systems which is generally learned by com-
paring positive and negative pairs. The Contrastive Loss (CL) is
the key in contrastive learning that has received more attention
recently and we find it is well suited for top-k recommendations.
However, it is a problem that CL treats the importance of the
positive and negative samples as the same. On the one hand, CL
faces the imbalance problem of one positive sample and many
negative samples. On the other hand, positive items are so few
in sparser datasets that their importance should be emphasized.
Moreover, the other important issue is that the sparse positive
items are still not sufficiently utilized in recommendations.
So we propose a new data augmentation method by using
multiple positive items (or samples) simultaneously with the
CL loss function. Therefore, we propose a Multi-Sample based
Contrastive Loss (MSCL) function which solves the two problems
by balancing the importance of positive and negative samples
and data augmentation. And based on the graph convolution
network (GCN) method, experimental results demonstrate the
state-of-the-art performance of MSCL. The proposed MSCL is
simple and can be applied in many methods. We will release our
code on GitHub upon the acceptance.

Index Terms—contrastive loss, recommendation system, data
augmentation, graph convolution network

I. INTRODUCTION

Recommendation systems have become an important re-
search field which aims to solve the information overload prob-
lem in the information explosion era. The recommendation
system is widely used in many fields, such as e-commerce [1],
[2], life services [3], [4], social networks [5], [6], entertainment
[7], [8], and it becomes one of the important technologies in
the information age. The top-k recommendation is the basic
problem of recommendation systems which learns the users’
preferences through their historical interaction records. Then
it recommends top k items to the users that they may like.

Deep learning based top-k recommendation algorithms sig-
nificantly improve the recommendation performance and be-
come the mainstream research direction in recent years, espe-
cially the collaborative filtering based methods. These existing
algorithms extract advanced semantic features and perform
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Fig. 1. We propose a multi-sample based contrastive loss (MSCL) which
distinguishes the importance of positive and negative samples and makes better
use of sparse positive samples by a new data augmentation method.

complex feature interactions by employing MLP [9], CNN
[10], RNN [11], attention mechanism [12], [13], etc. The user-
item interaction is naturally viewed as a bipartite graph. Graph
convolutional networks (GCN) based methods are increasingly
integrated with recommendation systems, such as NGCF [14],
LR-GCCF [15], LightGCN [16], DGCF [17]. GCN based
methods aggregate features of neighbors as well as higher-
order neighbors to obtain better feature representations of users
and items and the performance has been further improved.

In contrast to the rapid development of the recommenda-
tion methods, the loss function has rarely been improved.
Bayesian Personalized Ranking (BPR) [18] is a widely used
loss function for the top-k recommendation, which maximizes
the distance between positive and negative pairs. Recently, the
contrastive loss (CL) function has yielded excellent results in
several fields under the contrastive learning framework [19]–
[24]. In CL, all non-positive samples in the same batch are
used as negative samples, while BPR uses one or several
negative samples by random sampling. They all learn through
a contrastive process, so BPR loss can also be seen as a kind
of contrastive loss. BPR samples one or several true negative
samples, while CL directly treats non-positive items within the
same training batch as negative samples. CL can obtain a large
number of negative samples simply and quickly while BPR
utilizes a small number of samples and requires additional
sampling time.

However, the importance of positive and negative samples
should be treated differently by CL. (1) CL uses one positive
sample and N -1 negative samples where N is the batch size,
typically 1024, 2048, etc. Thus the imbalance problem or
different importance of the one positive sample and negative
samples should be tackled. (2) The count of positive samples
is very small thus recommendation systems facing the sparsity
problem. Intuitively, the sparser the dataset, the fewer positive
samples, and the more important the positive samples should
be, relative to the many negative samples. Therefore, positive
and negative samples should be treated differently according
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to the above two reasons.
Another issue we concern about is the insufficient use of

positive samples in the top-k recommendation. As mentioned
before, there are very limited positive items of each user in the
recommendation system. How to make full use of the existing
positive samples is a key problem. Data augmentation methods
help to solve this problem. Data augmentation methods in
the recommendation system are generally based on graph
structures, such as edge or node dropout, masking features,
random walk and so on. The potential of the combined use of
positive samples is not exploited.

To solve the above problems, we propose a new CL based
loss function and the basic idea is shown in Fig. 1. For the
first problem, we distinguished their different importance by
adjusting the weights of positive and negative samples. The
hyperparameter α is the weight of the positive samples which
represents their importance. To make better use of positive
items, we propose a new data augmentation method by using
multiple positive samples simultaneously. This data augmen-
tation makes better use of positive samples for the training
space can be expanded because of different combinations
of multiple positive samples. In the original situations, how
many items the user has interacted with can be interpreted
as how many cases the user can encounter. By a random
combination of multiple items, the user can encounter more
cases, thus expanding the training space. Moreover, this data
augmentation can be used for many other types of data, not
just graph data.

In summary, we propose a contrastive loss function based
on multiple (positive and negative) samples, which is named
as Multi-Sample based Contrastive Loss (MSCL). The main
contributions of this paper are summarized as follows:

• We propose a simple but effective loss function, MSCL,
which improves the contrastive loss to make it suitable
for the recommendation system. MSCL can be applied
to many models of recommendation system and is much
better than the traditional BPR loss.

• The MSCL function distinguishes the importance of
positive and negative samples by weighting. It helps to
address the imbalance problem of positive and negative
samples as well as to enhance the importance of positive
samples in sparser datasets.

• We propose a new data augmentation method by using
multiple positive samples simultaneously which makes
better use of the positive samples.

• Experimental results demonstrate the state-of-the-art per-
formance and many other advantages, such as broad
applicability, high training efficiency. MSCL is suitable
for the top-k recommendation, and it makes the simple
and basic MF more competitive.

The rest of this paper is organized as follows: In Section II,
related works are briefly reviewed. To verify the effectiveness
of MSCL, we design sLightGCN MSCL which combines
MSCL with the best baseline as our method in Section III.
Experiments and discussions are shown in Section IV. Section
V discusses the advantages of MSCL with more experiments.
Conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we briefly review related works: the con-
trastive loss and graph data augmentation methods. Differences
between ours and existing works are also presented.

A. Contrastive Loss (CL)

The contrastive loss has become an excellent tool in un-
supervised representation learning. It aims to maximize the
similarities of positive pairs and minimize that of negative
pairs [19], [20], [25]–[27]. The contrastive loss function is
widely used for many kinds of data, such as images, text,
audio, graphs, etc. It has been applied in the field of recom-
mendation [28], [29].

Broadly speaking, functions that use pairwise contrastive
learning processes are contrastive loss functions which have
many forms. BPR and triplet loss are the basic contrast-
based and widely used loss functions. BPR [18] loss aims
to maximize the distance between positive pair and negative
pair, which is proposed for the ranking task and widely used in
the top-k recommendation. Triplet loss [30]–[32] can be used
to train samples with small differences, especially for human
faces. The samples are triplets (anchor, positive, negative). The
triplet loss is calculated by optimizing the distance between
the anchor and positive samples to be smaller than the distance
between the anchor and negative samples.

However, they employ limited pairs of samples. Contrastive
loss functions based on multiple pairs of samples are more
efficient which contain Multi-class N-pair loss, InfoNCE loss,
Non-Parametric Softmax Classifier, NT-Xent loss. Multi-class
N-pair loss [33] is proposed from a deep metric learning
perspective, which greatly improves the triplet loss by jointly
pushing out multiple negative samples at each update. In-
foNCE loss [34]–[36] is proposed by maximizing a lower
bound on mutual information based on Noise-Contrastive
Estimation. Non-Parametric Softmax Classifier [37] is pre-
sented by maximizing distinction between instances via a
novel non-parametric softmax formulation in an unsupervised
feature learning approach. They come from different fields and
formula derivation but share a similar form. NT-Xent loss (the
normalized temperature-scaled cross entropy loss) [19], [24] is
proposed on these bases, but with the minor difference that the
denominator does not contain positive samples. All of them
are widely used in contrastive learning framework and always
obtain the state-of-the-art results.

The contrastive loss is used in the recommendation system
in the contrastive learning framework for recommendation
recently. SGL [28] is proposed for top-k recommendation,
CL4SRec [29] is used for sequential recommendation. But
none of them has improved CL to fit the recommendation
field.

B. Graph Data Augmentation

The user-item interaction records in recommendation sys-
tems are naturally viewed as bipartite graphs. Graph-based
data augmentation is widely used and studied in graph con-
trastive learning, which contains both traditional subgraph
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sampling methods and recently proposed methods [24], [28],
[38]–[41]. User and item are inherently linked and dependent
on each other in the user-item bipartite graph. Data augmen-
tation for GCN is also challenging due to the complex, non-
Euclidean structure of the graph, and few works study the data
augmentation of graphs. Therefore, graph data augmentation
must be tightly integrated with the graph rather than replicating
the methods used in Computer Vision and Natural Language
Processing domains.

Graph data augmentation conforms to the basic assumptions
of graph data processing. Node dropping assumes that edge
vertex missing does not alter semantics. Edge perturbation
is considered to improve the robustness of the semantics
against connectivity changes. Masking node features enhance
semantic robustness by losing some attributes for each node.
Subgraphs assume that local structure can hint the complete
semantics [24].

The graph augmentation can be divided into two types,
feature-space augmentations and structure-space augmenta-
tions: (1) feature-space augmentations are realized by modify-
ing initial node features, such as masking features or adding
Gaussian noise, and (2) structure-space augmentations operate
on graph structure by adding or removing nodes or edges (edge
perturbation), sub-sampling or subgraphs by random walk, or
generating different views using shortest distances or diffusion
matrices [40].

Recently, Zhu et al. [41] proposes adaptive graph aug-
mentation to design augmentation schemes that tend to keep
important structures and attributes unchanged while the unim-
portant links and features are perturbed. Zhao et al. [42]
utilizes a neural edge predictor to predict likely edges for graph
augmentation to improve node classification performance. For
top-k recommendations, the latest work, SGL [28], uses three
operators on the graph structure, namely node dropout, edge
dropout and random walk. And experimental results show that
the edge dropout performs the best.

C. Differences with Existing Works

Differences with existing CL functions: Many works are
done just using the CL function in the contrastive Learning
framework. SGL in the recommendation system employs a
multi-tasking mechanism with joint use of CL and BPR.
Despite some improvements are proposed on CL, such as soft
contrastive loss [43], debiased contrastive loss [44], they all
treat the weights of the positive sample and negative samples
as the same. And the problem of imbalanced positive and
negative samples is still not be concerned. More importantly,
how to adapt CL to recommendation systems is a new topic
worth investigating, especially to emphasize the importance
of positive samples on sparser datasets. Thus, the proposed
importance-aware CL is different from the previous works.

Differences with existing graph data augmentation: Existing
graph data augmentations in the recommendation system are
common methods in the graph field. How to make full use of
the limited positive samples to obtain better results, especially
for the recommendation system is an important task and
challenge for data augmentation. We randomly sampled a fixed

number within one-hop neighbors which is not the same as
random dropout or subgraph by random walk on multiple
hops. More importantly, our method is a structure-space based
augmentation, and traditional structure-space based methods
are generally work in the aggregation process of GCNs. The
traditional augmented data are used one by one under the
same loss which is a serial approach. We use multiple positive
samples at the same time and combine them explicitly with
the loss function which is a parallel way for better constraints.

III. METHODOLOGY

We designed a method named as sLightGCN MSCL which
combine MSCL with a strong baseline as shown in Fig. 2. to
verify the effectiveness of the proposed loss function. It should
be noted that our approach is model-agnostic and can be
applied to many methods of recommendation systems. In this
section, we first briefly describe the basic methods LightGCN,
then focus on the MSCL function, and finally analyze the time
complexity.

A. Basic Method

Recently, graph related methods have shown excellent per-
formances, which treat user-item interactions as graph struc-
tures and adopt graph convolution network. Combined with
collaborative filtering, NGCF [14], LR-GCCF [15], LightGCN
[16], etc. are excellent models for top-k recommendation.

LightGCN is the state-of-the-art method and is introduced
here as our main baseline. This model includes only the most
essential component in GCN - neighborhood aggregation - for
collaborative filtering which is much easier to implement and
train and gains substantial improvements. Then neighborhood
aggregation is defined as follows:

e(k+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i (1)

e
(k+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(k)u . (2)

where u, i denote the user and the item in the user-item graph,
e
(k)
u , e

(k)
i respectively denote embeddings of u, i of the k-th

layer. Specially, k = 0 represents the initialized latent vector;
Nu and Ni represent the set of the neighbors of target u and
i, relatively. The final embedings of users and items are:

eu =

K∑
k=0

αke
(k)
u (3)

ei =

K∑
k=0

αke
(k)
i (4)

where K is the numbers of layers; αk denotes the importance
of the k-th layer embedding, and they can be treated as a
hyper-parameter to be tuned manually, or as a model parameter
to be optimized automatically. Following the original paper
of LightGCN, the mean of embeddings from all layers are
adopted as the final embeddings, that is αk=1/(K+1).
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Fig. 2. An illustration of our method. Many models can be used as the encoder, LightGCN is used here as an example.

LightGCN-single, a variant of LightGCN are also proposed
in the paper, where only the k-th embeddings, e(k)u , e

(k)
i , are

used as final embeddings. This variant, instead of the original
LightGCN, is used here for its better performance and is
named sLightGCN for short.

The BPR loss is used for training in LightGCN. We present
it here for comparison with MSCL.

LBPR =
∑

(u,i,j)∈O

− log σ (ŷui − ŷuj) (5)

where σ(·) is the logistic sigmoid function.

B. Multi-Sample based Contrastive Loss (MSCL)

1) The Basic Contrastive Loss (CL) : Refer to some recent
works [19], [24], we use the NT-Xent as the original con-
trastive loss function and then adapt it to the recommendation
field.

The NT-Xent is:

L = − log
exp (sim (zi, zj) /τ)∑N

k=1,k 6=i exp (sim (zi, zk) /τ)
(6)

where sim (zi, zj) = z>i zj/ ‖zi‖ ‖zj‖, and zi, zj means
the embeddings of sample i, j in a minibatch, N is the
batch size, τ denotes the temperature parameter. To fit the
recommendation domain, we rewrite it as LCL:

f (u, i) = e>u ei/ ‖eu‖ ‖ei‖ (7)

LCL = − 1

N

∑
(u,i)∈D

log
exp (f(u, i+)/τ)∑
i∈I− exp (f(u, i)/τ)

= − 1

N

∑
(u,i)∈D

(
f(u, i+)/τ − log

∑
i∈I−

exp (f(u, i)/τ))
)

(8)

where D = {(u, i), u ∈ U, i ∈ I} is a training batch; U , I is
the set of users and items, respectively; i+ means the positive
sample of target user u, and I− is the set of negative samples.
f (u, i) is the cosine similarity of the (u, i) pair based on their
embeddings. We follow the sampling strategy used in [19],
[24] that the other non-positive samples in the same batch are
seen as negative samples.

2) Importance-aware CL (ICL) : In the basic contrastive
loss, the minus sign is preceded by one positive sample,
followed by the sum of N−1 negative samples which results in
imbalance problems. In addition, emphasizing the importance
of positive samples on sparser datasets is also a problem we
want to address. These two problems can be solved together by
weighting, an effective and common practice. The importance
of positive and negative samples can be adjusted which helps
to better backpropagate and make the training more effective.
We name the modified CL as importance-aware CL, which is:

LICL =− 1

N

∑
(u,i)∈D

(
αf(u, i+)/τ

− (1− α) log
∑
i∈I−

exp (f(u, i)/τ))
)

(9)

where α is a hyperparameter and α ∈ [0, 1].
When α = 0.5, the LICL is the same as LCL. Because

problems in the analysis are inevitable, α = 0.5 is not optimal
in general. When α > 0.5, it means that N -1 negative samples
need more weights and relatively more losses to be optimized.
When α < 0.5, it means that the positive samples need to be
given more attention, and it may be because there are too
few positive items for users in the recommendation system.
The weighting method is simple yet effective in adapting to a
variety of datasets.

3) Multiple Positive Samples based CL (MCL): To address
the problem that positive samples are insufficiently used, we
propose a new data augmentation method that uses multiple
positive samples simultaneously. We propose a multi-path
based method to use multiple positive samples under the
supervision of CL function. The conventional approach is to
use a random batch of data and a loss function to form a
learning path after the model is computed. We extend this idea
by randomly sampling M positive samples to form M paths.
The target user is optimized by M positive samples. The final
loss is the sum of M loss functions which is calculated simply
and effectively. Thus, the multiple positive samples based CL
is:

LMCL =

M∑
m=1

Lm
CL (10)

where M is a hyperparameter which is the number of used
positive samples.
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This data augmentation comes with many benefits. (1) We
keep the same training process of MSCL and the original one,
but the difference is theof samples used for each training.
Suppose the user has L positive samples, there are C1

L

(Combination formula) possible cases by random sampling
for the user at each training time in the original way. MSCL
uses M positive samples simultaneously for the user, so there
are CM

L possible cases for each training. Therefore, the M
positive samples greatly increase the cases that users can
encounter. This makes augmentation and better usage of the
existing positive items. (2) Positive and negative samples form
a comparison, thus the expanded positive samples also enlarge
the comparable cases. (3) Furthermore, we integrate this
augmentation with the loss function explicitly in a parallel way
to facilitate more and better constraint and backpropagation for
the user. (4) And this data augmentation method can be widely
applied to graph data as well as various other types of data.

4) Multi-Sample based CL (MSCL): We have elaborated
on our two improvements, ICL and MCL. These two improve-
ments are proposed from different perspectives. Combining
them together can solve the two problems for the top-k
recommendation. In this case, multiple positive samples and
many negative samples are used at the same time. Therefore,
we term it as Multi-Sample based Contrastive Loss, which is
defined as follows:

LMSCL =

M∑
m=1

Lm
ICL (11)

Their combination forms a logic for this paper: using multi-
ple (positive and negative) samples and solve the problems that
exist in them. The proposed function is simple and effective.
Two hyperparameters are introduced, but they are easy to tune.

C. Model Prediction

The model prediction is defined as the inner product of the
user and item final embeddings:

ŷui = eTuei (12)

Based on this prediction, the top-k most similar items are
recommended to the user.

The proposed MSCL is used for model training, and the
method is named as sLightGCN MSCL. MSCL replaces the
BPR loss which is used in the original LightGCN. Except for
the proposed loss function, our method remains the same as
the LightGCN. The L2 regularization for all parameters is also
used following LightGCN, and it is omitted here for clarity.

D. Complexity Analyses

In this subsection, we analyze the complexity of sLight-
GCN MSCL following SGL [28]. Since sLightGCN MSCL
does not introduce trainable parameters and there is no change
of model prediction, the spatial complexity and the time
complexity of the model inference are the same as LightGCN.
The complexity of sLightGCN MSCL can be divided into
two parts, that of sLightGCN and MSCL, and they are
O(2|E|)+O(2|E|Lds|E|/N), O(mN |E|ds), where E is the

edge in the user-item interaction graph, L, s,m denote the
number of GCN layers, the number of epochs, the number
of multiple positive samples, and d,N denote the embedding
size, the batch size, respectively. For comparison, that of the
BPR loss is O(2|E|ds).

In fact, the overall amount of calculation is significantly
reduced because the number of training epoch is substantially
reduced due to better convergence performance as shown in
training efficiency in section V. MSCL is O(mN/2) times
larger than the computational cost of BPR, but this is a
simple inner product which is directly accelerated by matrix
operations through the GPU. Therefore, there is no significant
increase in training time in each epoch as can be seen in
section V.

IV. EXPERIMENTS

We first introduce the basic information related to the
experiments, such as datasets, evaluation metrics, and hyper-
parameter settings. sLightGCN MSCL is compared with many
strong baselines. We conduct ablation studies to verify the
effectiveness of the proposed improvements. The main hyper-
parameters of sLightGCN MSCL are discussed in detail.

A. Datasets

To evaluate the effectiveness of MSCL, we conduct ex-
periments on three benchmark datasets: Yelp2018 [16], [28],
Amazon-Book [16], [28], and Alibaba-iFashion [2], [28].

Yelp2018: Yelp2018 is adopted from the 2018 edition of
the Yelp challenge. The local businesses like restaurants and
bars are viewed as the items.

Amazon-book: Amazon-review is a widely used dataset for
product recommendation and Amazon-book from the collec-
tion is selected.

Alibaba-iFashion: Alibaba-iFashion is a large and rich
dataset for Fashion Outfit recommendation. 300k users and all
their interactions over the fashion outfits are randomly sampled
by SGL [28]. It is quite sparse, which is a significant difference
from the first two datasets.

TABLE I
STATISTICS OF THE DATASETS.

Dataset Users Items Interactions Density

Yelp2018 31,668 38,048 1,561,406 0.00130
Amazon-Book 52,643 91,599 2,984,108 0.00062

Alibaba-iFashion 300,000 81,614 1,607,813 0.00007

Three datasets vary significantly in domains, size, and
sparsity. The statics of the processed datasets are summarized
in Table I. For comparison purposes, we directly use the split
data provided in SGL [28].

B. Evaluation Metrics

Following NGCF, LightGCN, and SGL [14], [16], [28], two
widely used evaluation metrics, Recall@K and NDCG@K
where K=20, are used to evaluate the performance of top-k
recommendation. Recall measures the number of items that the
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TABLE II
OVERALL PERFORMANCE COMPARISON

Method
Yelp2018 Amazon-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

MF 0.0441 0.0353 0.0329 0.0249 0.1020 0.0474

NGCF 0.0579 0.0477 0.0344 0.0263 0.1043 0.0486
LR-GCCF 0.0591 0.0485 0.0378 0.0292 0.1110 0.0529
LightGCN 0.0639 0.0525 0.0411 0.0315 0.1078 0.0507
sLightGCN 0.0649 0.0525 0.0469 0.0363 0.1160 0.0553

Mult-VAE 0.0584 0.0450 0.0407 0.0315 0.1041 0.0497
SGL 0.0675 0.0555 0.0478 0.0379 0.1126 0.0538

LightGCN MSCL(ours) 0.0681 0.0564 0.0500 0.0391 0.1144 0.0546
sLightGCN MSCL(ours) 0.0691 0.0568 0.0580 0.0466 0.1201 0.0578

user likes in the test data that has been successfully predicted
in the top-k ranking list. NDCG considers the positions of
the items and higher scores are given if the items are ranked
higher. It is a metric about ranking and thus is important for
the top-k recommendation. The larger the values, the better
the performance for both metrics.

C. Hyper-parameter Settings

We implement our proposed method on top of the official
code of LightGCN1 based with Pytorch. We replace the
loss function and follow LightGCN’s settings as much as
possible. The embedding size is fixed to 64 and the default
batch size is 2048 for all models. The learning rate and L2
regularization coefficients are chosen by grid search in the
range of {0.0001, 0.001, 0.01} and {1e−5, 1e−4, · · · , 1e−2}.
These are hyper-parameters of the original LightGCN. We
adjust hyper-parameters of MSCL, M and τ , in the ranges
{1, 3, 5, · · · , 15}, {0.1, 0.2, 0.5, 1.0}, respectively. And τ is
0.1 or 0.2 usually. The weight α is adjust in [0.4,0.7].

D. Compared Methods

To demonstrate the performance of our method, we select
many strong baselines for comparison. NGCF [14], LR-GCCF
[15], LightGCN [16] are the competing baselines with GCN
of top-k recommendation recently which having shown to
outperform several methods including GC-MC [45], PinSage
[46], NeuMF [9] since the previous works [14]–[16]. The
latest methods, SGL [28], is also selected which is a self-
supervised based method. In addition, the basic method and
the variable autoencoder-based methods, MF and Mult-VAE,
are compared.

MF: This is a traditional method based on matrix factor-
ization which is based only on the embeddings of users and
items, namely eu and ei.

NGCF [14]: NGCF integrates the bipartite graph structure
into the embedding process based on the graph convolutional
network. It explicitly exploits the collaborative signal in the
form of high-order connectivities by propagating embeddings
on the graph structure.

1https://github. com/gusye1234/LightGCN-PyTorch

LR-GCCF [15]: This method enhances the recommenda-
tion performance with less complexity by removing the non-
linearity. The final embeddings are the same as NGCF.

LightGCN and sLightGCN [16]: LightGCN is the state-of-
the-art GCN based collaborative filtering model, and sLight-
GCN is a variant. They are described in detail in Section III.

Mult-VAE [47]: Mult-VAE extends variational autoencoders
(VAEs) to collaborative filtering and uses a multinomial like-
lihood for the data distribution. Besides, it introduces an
additional regularization parameter for optimization. It can be
seen as a special case of self-supervised learning(SSL) for
recommendation.

SGL [28]: SGL is the latest baseline for top-k recom-
mendations. It introduces self-supervised learning into the
recommendation system based on the contrastive learning
framework. It is implemented on LightGCN and uses a multi-
task approach that unites the contrastive loss and the BPR loss
function. SGL mainly benefits from graph contrastive learning
to reinforce user and item representations. Following the paper,
the edge drop based SGL achieving the best performance are
adopted here.

E. Performance Comparison

The performance comparison on the three datasets is shown
in Table II. The best results are shown in bold while underlined
scores are the second best. We follow the experimental results
of SGL [28], except for MF, LR-GCCF, and our methods.
After statistical analysis, the standard deviations on Recall and
NDCG are not big than ±0.0002 under different initialization
seeds. We have the following observations:

MF is the most basic and simplest method and performs
the worst. NGCF, LR-GCCF, and LightGCN are GCN based
methods. NGCF achieved improvements relative to MF by
introducing the GCN method into top-k recommendations,
especially on the Yelp2008 dataset. LR-GCCF, LightGCN
and sLightGCN can be seen as improvements of NGCF.
Their performances are better than NGCF, and these results
are consistent with the performance in the original paper.
These three methods show the significant role of graph con-
volution methods in recommendation systems. LightGCN is
the strongest baseline and becomes the basis for subsequent
methods, such as SGL and our method. LightGCN removes
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TABLE III
ABLATION STUDY

Loss Importance-aware Multi-positive samples
Yelp2018 Amazon-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

CL 0.0655 0.0541 0.0480 0.0399 0.1152 0.0556
ICL X 0.0668 0.0548 0.0544 0.0437 0.1165 0.0558

MCL X 0.0677 0.0559 0.0516 0.0425 0.1184 0.0573
MSCL X X 0.0691 0.0568 0.0580 0.0466 0.1201 0.0578

the nonlinear activation layer and learning parameters making
the model more applicable to recommendation systems rather
than simply employing GCN which illustrates that the GCN
method should be modified to fit the recommendation system.

Mult-VAE and SGL are methods that belong to self-
supervised learning (SSL). The results of Mult-VAE are
generally better than NGCF, indicating that the variational
auto-encoder based method and self-supervised learning is
competitive for recommendation. The results of SGL show that
it has a clear boost compared with LightGCN and suboptimal
results are obtained on two datasets which demonstrates the
advancement of contrastive learning methods.

The proposed sLightGCN MSCL is the best among all
methods. LightGCN MSCL is also listed as a variant of
our method, which is also superior to other methods. Com-
pared to the latest and best method SGL, the improve-
ments of sLightGCN MSCL on Yelp2018, Amazon-Book,
and Alibaba-iFashion are 2.37%, 21.34%, 6.67% on Recall,
2.34%, 22.96%, 7.43% on NDCG, respectively. SGL uses CL
and BPR jointly in the multi-task learning approach without
exploiting the potential of CL. Our approach is simpler and
consumes less time which can be seen in Training Efficiency
in Section V. This shows the correctness of improving CL.

F. Ablation Study

MSCL combines two components, the different importance
of positive and negative samples and the use of multiple
positive samples. ICL, MCL denote importance-aware CL and
multiple positive samples based CL respectively. They are
shown in Equations (8)-(10).

1) The effectiveness of the two components: Detailed ab-
lation studies demonstrate the effectiveness of our two com-
ponents as shown in Table III. The comparison of CL and
ICL, MCL and MSCL show the effectiveness of adding
weights to distinguish the importance of positive and negative
samples. The comparison of CL and MCL, ICL and MSCL
illustrate the effectiveness of data augmentation based on
multiple positive samples. All the results, the two evaluation
metrics on three datasets in these four comparison groups, in
Table III consistently demonstrate the effectiveness of the two
components.

Besides, we find the three datasets perform differently
on the two components. Amazon-Book benefits more from
adding weights to distinguish the importance while the other
two datasets improve more significantly on multiple positive
samples. This shows that the proposed two components are
effective, but perform differently depending on the dataset.

2) Detailed analysis about the role of multiple positive
samples: More comparisons in training tend to yield better
results such as a large batch size. Our data augmentation
approach of using multiple positive samples also increases
the count of comparisons in each epoch. Therefore, one of
the reasons for the good performance of multiple positive
samples also involves more comparisons. However, we want to
show that our proposed approach makes better use of positive
samples, except for thecountof comparisons. Experiments with
the same number of comparisons need to be done to exclude
this factor. We expand the batch size of ICL to M*N because
a user is compared with M*N items in MSCL, where N is
the training batch size.

The results are shown in Fig. 3. Our method consistently
outperforms the latter on the three datasets. Overall, the
performance of the same batch size peaks and falls back
as batch size increases, especially on Amazon-Book. And
they are significantly worse than the performances of multiple
positive samples when M=9. Yelp2018 and Alibaba-iFashion
have the same trend of change in Fig. 3 which is different
from that of Amazon-Book. This is consistent with the above
observation in Table III that Yelp2018 and Alibaba-iFashion
behave differently from Amazon-Book. In summary, the com-
bination of multiple positive samples makes better use of the
limited number of positive samples.

G. Discussion
1) Impact of the Weight: We adjust the weight α and the re-

sults are shown in Fig. 4. The results show that both weighting
methods achieve better results relative to unweighted when α
is 0.5. The first two datasets both obtain the best performance
at 0.45, while Alibaba-iFashion reaches the best at 0.60. The
main reason for this difference is that Alibaba-iFashion is the
sparsest dataset and has few positive samples of users. Each
user has 49.3, 56.7, and 6.4 positive items on average on the
three datasets, respectively. For Yelp2018 and Amazon-Book,
the imbalance problem is the main issue, and thus thousands
of negative samples do require relatively more weights to learn
better. Compared to the other two datasets, positive items of
Alibaba-iFashion are so few that positive samples should be
more important and given more weight. This illustrates that the
first two datasets benefit mainly from solving the imbalance
problem and the last dataset benefits mainly from increasing
the importance of a limited number of positive samples. It
also demonstrates that the weighting approach can solve these
two both problems to balance the importance of positive and
negative samples and can adapt to different datasets, despite
its simplicity.
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Fig. 3. Detailed analysis about the role of multiple positive samples. Our data augmentation approach also increases the count of comparisons in the same
epoch. MSCL still better than the same size of comparisons which indicates MSCL makes better use of the limited number of positive samples.

Fig. 4. Impact of the weight α. Different datasets have different optimal weights. Thousands of negative samples in the first two datasets should be given
more weight. Alibaba-iFashion is too sparse and thus the positive samples are more important.

Fig. 5. Impact of the number of positive samples. The effectiveness of adding positive samples is consistently shown on both curve.

2) Impact of the number of positive samples : Both MSCL
and MCL are able to illustrate the role of multiple positive
samples and the results are shown in Fig. 5. All the results of
MSCL and MCL with multiple positive samples are signifi-
cantly better than those with only one positive sample on the
left. So the proposed data augmentation method does make
better use of the positive samples. MSCL and MCL have the
same tend on the three datasets. As the number of positive
samples increases, MSCL and MCL start with a significant
improvement, and then change flatly. It can be seen from Fig.
5 that about 5 or 7 is appropriate, and more positive samples
tend to be slightly better.

Besides, it is consistent with expectations that the results
in the left bottom of each dataset in Fig. 5 are the worst
which do not incorporate any improvements. It also shows that
all results of MSCL are better than the MCL with the same
number of positive samples, demonstrating the effectiveness
of the importance-aware method.

V. ADVANTAGES OF MSCL

We have obtained optimal results of MSCL by the method
sLightGCN MSCL on top-k recommendation. We focus on
the proposed loss function MSCL in this section. MSCL is
simple and easy to implement, but it also has many other
advantages, such as applicability, more suitable for the top-k
recommendation, high training efficiency. In addition, MSCL
improves the simplest and most basic model MF significantly
making it more valuable for applications. Finally, as an exten-
sion, we verify that the problems and the improvements of this
paper are also generalizable to multiple samples based BPR
function.

A. Applicability of MSCL

To show the applicability of MSCL, we apply it to many
methods and compare it with the BPR loss, and methods with
these two loss are named as “*-MSCL”, “*-BPR”.
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TABLE IV
PERFORMANCE OF MSCL COMPARED WITH BPR ON DIFFERENT METHODS

Method
Yelp2018 Amazon-Book Alibaba-iFashion

Recall NDCG Recall NDCG Recall NDCG

MF BPR 0.0441 0.0353 0.0329 0.0249 0.1020 0.0474
MF MSCL 0.0657(48.98%) 0.0538(52.41%) 0.0478(45.29%) 0.0369(48.19%) 0.1185(16.18%) 0.0576(21.52%)

NGCF BPR 0.0579 0.0477 0.0344 0.0263 0.1043 0.0486
NGCF MSCL 0.0655(13.13%) 0.0538(12.79%) 0.0481(39.83%) 0.0375(42.59%) 0.1152(10.45%) 0.0565(16.26%)

LR-GCCF BPR 0.0591 0.0485 0.0378 0.0292 0.1072 0.0507
LR-GCCF MSCL 0.0658(11.34%) 0.0543(11.96%) 0.0465(23.02%) 0.0360(23.29%) 0.1119(4.38%) 0.0533(5.13%)

sLightGCN BPR 0.0649 0.0525 0.0469 0.0363 0.1160 0.0553
sLightGCN MSCL 0.0691(6.47%) 0.0568(8.19%) 0.0580(23.67%) 0.0466(28.37%) 0.1201(3.53%) 0.0578(4.52%)

Fig. 6. Better improvements on NDCG for top-k recommendation. The figure shows the percentage improvement of MSCL over BPR on Recall@K and
NDCG@K at different K. Higher improvement of NDCG@K than Recall@K shows MSCL is more suitable for top-k recommendation.

The results are shown in Table IV, and the percentage of
improvements relative to BPR are also presented. MSCL-based
methods outperform the BPR-based methods on all results
on the three datasets, and have significant improvements on
MF, NGCF and LR-GCCF. sLightGCN MSCL consistently
obtains the best results on all datasets and has desirable
improvements. In particular, the improvement on the Amazon-
Book dataset is still about 25%.

Furthermore, MF is the most fundamental method just
based on embeddings in the recommendation field, and many
methods can be seen as developments of MF. Theoretically,
MSCL is suitable for all embedding based methods. Thus, the
effectiveness of MF shows that MSCL can be widely used in
recommendation systems. The above experimental results and
analysis show that our proposed MSCL is model-agnostic and
widely adaptable.

B. Suitable for the Top-k Recommendation

We think that MSCL is more suitable for the Top-k recom-
mendation task. This can be illustrated by theoretical analysis
and experimental results.

Theoretically, MSCL is compared with the loss function
BPR. The common goal of both BPR and MSCL is to learn
better feature representation by comparing between positive
and negative samples. BPR uses a limited number of compar-
isons, usually one or several while MSCL employ thousands.
Moreover, MSCL improves the quality of comparison by
distinguishing the importance of positive and negative samples
and makes better use of the few positive samples. MSCL
makes the similarities between positive and negative samples

more accurate through more and better comparisons. The
top-k recommendation is a ranking task, and BPR is pro-
posed specifically for ranking tasks. MSCL outperforms BPR
in terms of theoretical and experimental results. Therefore,
MSCL could get better ranking results and makes more sense
for top-k recommendations.

Experimentally, the improvement of the evaluation metric
NDCG is more obvious. NDCG is a ranking related metric
which is more meaningful for ranking and top-k recommenda-
tion task compared to Recall. The following two observations
support us well: (1) In Table IV, we found that the NDCG
boost generally more than Recall. On average, the improve-
ments are 19.98%, 32.95%, 8.64% on Recall while that are
21.34%, 35.61%, 11.86% on NDCG for the three datasets
respectively. This shows the superiority of MSCL for top-k
recommendation on different methods. (2) Fig. 6 shows the
more significant improvement of MSCL over BPR on NDCG
compared to Recall with different K. This shows that the
ranking performance of NDCG is consistently higher than
Recall even as K changes.

C. The Improvement of MSCL on MF

The performance of MF MSCL is particularly noteworthy
in Table IV.

(1) MF MSCL gains the most significant improvement,
among all MSCL-based versus BPR-based methods. The re-
sults are even better than those of all BPR-based methods,
sLightGCN BPR included. It indicates MSCL with the most
basic and simple method is significantly better than excellent
methods recently proposed, even the state-of-the-art GCN
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Fig. 7. Training Efficiency. Testing recall of MSCL and BPR with sLightGCN on three datasets. Here the total training epochs of MSCL are shown, the
curve of BPR is too long and thus shows the same training epochs as MSCL.

methods. Thus, to some extent, a good loss function works
better than new models.

(2) In addition, we find that the results MF MSCL are
also competitive. They are close to or better than that of
NGCF MSCL and LR-GCCF MSCL on all datasets, and are
close to sLightGCN MSCL on the Alibaba-iFashion dataset.
This indicates that MSCL is also effective in directly optimiz-
ing embeddings without a complex model, such as GCN.

These observations also indicate that MSCL can achieve
competitive results in the simplest baseline, which is also con-
sistent with the latest research Graph-MLP [48]. Graph-MLP
indicates that it is sufficient for learning discriminative node
representations only by MLP and graph based CL, without
the complex GCN. Compared with Graph-MLP, MF MSCL is
more concise and simple. It is based only on embeddings and
improved CL functions, which is still effective even without
MLP. Graph-MLP does not optimize the CL loss function
which is what we do, this shows the great potential of MSCL.

Three other points need to be highlighted. (1) As the most
basic and simple method, MF MSCL can be widely used
in various tasks of recommendation systems, not only the
top-k tasks. The applicability of MSCL is best illustrated
by MF MSCL. (2) MF MSCL also has other advantages
of MSCL presented in this section, such as being more
suitable for top-k recommendation and fast convergence. (3)
Importantly, it is valuable for applications with high space and
time requirements or industrial applications at a large scale.

D. Training Efficiency

TABLE V
ACTUAL TRAIN TIME PER EPOCH

BPR
MSCL MSCL MSCL MSCL

M=1 M=5 M=10 M=15

Yelp2018 13 12 15 19 22
Amazon-Book 64 61 65 71 77

Alibaba-iFashion 17 16 19 22 25

The training efficiency of MSCL is also significantly im-
proved as shown in Fig. 7. Because of the large difference in
loss values, following LightGCN, SGL, the test performance
on three datasets are used to show the convergence speed. In
terms of the number of training epochs required to achieve

optimal performance, more than 900 epochs are required for
BPR, while MSCL achieves the best performance at 46, 3, and
90 epochs on the three datasets respectively. BPR requires
too many epochs for convergence while MSCL converges
earlier, so we adopt the same number of epoch as MACL
for comparison.

For the first two datasets, MSCL converges directly to the
high values approximating the final performance with slight
fluctuations while BPR converges slowly at lower values. On
the third dataset, it is slightly more difficult to converge due to
the sparsity of the dataset. MSCL converges sharply by about
5 epochs to the value that approximates the final performance.
This all shows that MSCL has a fast convergence capability.
The training efficiency is improved at least tens of times on
different datasets in terms of train epochs as mentioned before.
The main reason for the high training efficiency is that multiple
samples are learned at the same time as demonstrated in [38].

Moreover, in terms of actual training time, MSCL does not
significantly increase the training time per epoch. Table V
shows the average time consumption in each epoch in seconds.
MSCL takes less time than BPR when one positive sample is
used as shown in the first two columns of the table. Because
BPR requires negative sampling while MSCL needs not and
the computation with multiple negative samples is accelerated
by the GPU. When the number of positive samples increases
by 1, the average time increased on the three data sets is 0.8s.
Such time consumption is completely negligible. When M=5,
MSCL and BPR consume the same time, but the performance
is much better than BPR. Relative to the latest SGL [28]
based on the contrastive learning framework, it takes about
3.7x larger than LightGCN while ours is about 1.5 times of
LightGCN.

The above analyses demonstrate that MSCL has remarkable
improvement in convergence speed and training efficiency than
BPR. And there is no significant increase in time consumption
per epoch, which is an advantage over SGL in terms of
performance and time consumption.

E. Multi-Sample based BPR Loss (MSBPR)

The proposed MSCL combines ICL and MCL aiming to
solve the problem of different importance of positive and
negative samples and insufficient use of positive samples. The
problems and solutions are also fit for BPR. Therefore, we
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TABLE VI
PERFORMANCE COMPARISON AMONG BPR, MSBPR AND MSCL

BPR MSBPR MSCL

Yelp2018
Recall 0.0649 0.0670 0.0691
NDCG 0.0525 0.0552 0.0568

Amazon-Book
Recall 0.0469 0.0458 0.058
NDCG 0.0363 0.0371 0.0466

Alibaba-iFashion
Recall 0.1160 0.1172 0.1201
NDCG 0.0553 0.0564 0.0578

modify the loss function of the multi-sample based BPR in
the same way and present the MSBPR function. In this case,
the same sampling method of MSCL is used by MSBPR. The
formula of MSBPR is as follows:

LMSBPR =

M∑
m=1

∑
(u,i)∈D

− log σ
(
αf
(
u, i+

)
/τ

−(1− α)f
(
u, i−

)
/τ
) (13)

where σ is the logistic sigmoid. We use f(u, i) instead of ŷui
by drawing on comparative learning because the ŷui based
approach doesn’t work.

The results are shown in Table VI, and the baseline is
sLightGCN. With the only exception in all results that the
recall of MSBPR is worse than BPR on Amazon-Book,
the overall MSBPR-based methods are better than BPR. It
shows that our proposed idea can be extended to BPR and
other pair-wise based loss functions. In addition, we find that
MSCL works better than MSBPR, especially on the Amazon-
Book dataset, which shows the superiority of the CL function
again and the correctness of improving CL in this paper.
Therefore, MSCL is better than BPR and MSBPR in the field
of recommendation systems.

VI. CONCLUSION

In this paper, we propose MSCL function for the multi-
sample based recommendation systems. We distinguish the
different importance of positive and negative samples and
propose a new data augmentation method to make better use of
positive samples. MSCL is simple but obtains optimal results.
More importantly, it has the advantages of wide applicability to
various models, suitability for the top-k recommendation, and
high training efficiency. MSCL makes simple and basic MF
more valuable for industrial applications. These advantages
make MSCL more competitive for top-k recommendation
tasks.

This work represents an initial attempt to exploit improved
CL for the recommendation. We believe that other improve-
ments based on CL are an important direction. The two
problems, the different importance of positive and negative
samples, insufficient use of positive samples, are still valuable
and deserve to be studied in depth. The proposed MSCL has
the potential to be extended to graph-related fields as well as
other fields.
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